xbatcher.generators module
xbatcher.generators module#
Classes for iterating through xarray datarrays / datasets in batches.
- class xbatcher.generators.BatchGenerator(ds: xarray.core.dataset.Dataset, input_dims: Dict[Hashable, int], input_overlap: Dict[Hashable, int] = {}, batch_dims: Dict[Hashable, int] = {}, concat_input_dims: bool = False, preload_batch: bool = True)[source]#
Bases:
objectCreate generator for iterating through xarray datarrays / datasets in batches.
- Parameters
- ds
xarray.Datasetorxarray.DataArray The data to iterate over
- input_dimsdict
A dictionary specifying the size of the inputs in each dimension, e.g.
{'lat': 30, 'lon': 30}These are the dimensions the ML library will see. All other dimensions will be stacked into one dimension calledsample.- input_overlapdict, optional
A dictionary specifying the overlap along each dimension e.g.
{'lat': 3, 'lon': 3}- batch_dimsdict, optional
A dictionary specifying the size of the batch along each dimension e.g.
{'time': 10}. These will always be iterated over.- concat_input_dimsbool, optional
If
True, the dimension chunks specified ininput_dimswill be concatenated and stacked into thesampledimension. The batch index will be included as a new levelinput_batchin thesamplecoordinate. IfFalse, the dimension chunks specified ininput_dimswill be iterated over.- preload_batchbool, optional
If
True, each batch will be loaded into memory before reshaping / processing, triggering any dask arrays to be computed.
- ds
- Yields
- ds_slice
xarray.Datasetorxarray.DataArray Slices of the array matching the given batch size specification.
- ds_slice